The fallacy of placing confidence in confidence intervals

نویسندگان

  • Richard D. Morey
  • Rink Hoekstra
  • Jeffrey N. Rouder
  • Michael D. Lee
  • Eric-Jan Wagenmakers
چکیده

Interval estimates - estimates of parameters that include an allowance for sampling uncertainty - have long been touted as a key component of statistical analyses. There are several kinds of interval estimates, but the most popular are confidence intervals (CIs): intervals that contain the true parameter value in some known proportion of repeated samples, on average. The width of confidence intervals is thought to index the precision of an estimate; CIs are thought to be a guide to which parameter values are plausible or reasonable; and the confidence coefficient of the interval (e.g., 95 %) is thought to index the plausibility that the true parameter is included in the interval. We show in a number of examples that CIs do not necessarily have any of these properties, and can lead to unjustified or arbitrary inferences. For this reason, we caution against relying upon confidence interval theory to justify interval estimates, and suggest that other theories of interval estimation should be used instead.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exact maximum coverage probabilities of confidence intervals with increasing bounds for Poisson distribution mean

 ‎A Poisson distribution is well used as a standard model for analyzing count data‎. ‎So the Poisson distribution parameter estimation is widely applied in practice‎. ‎Providing accurate confidence intervals for the discrete distribution parameters is very difficult‎. ‎So far‎, ‎many asymptotic confidence intervals for the mean of Poisson distribution is provided‎. ‎It is known that the coverag...

متن کامل

Bootstrap confidence intervals of CNpk for type‑II generalized log‑logistic distribution

This paper deals with construction of confidence intervals for process capability index using bootstrap method (proposed by Chen and Pearn in Qual Reliab Eng Int 13(6):355–360, 1997) by applying simulation technique. It is assumed that the quality characteristic follows type-II generalized log-logistic distribution introduced by Rosaiah et al. in Int J Agric Stat Sci 4(2):283–292, (2008). Discu...

متن کامل

Confidence Intervals for Lower Quantiles Based on Two-Sample Scheme

In this paper, a new two-sampling scheme is proposed to construct appropriate confidence intervals for the lower population quantiles. The confidence intervals are determined in the parametric and nonparametric set up and the optimality problem is discussed in each case. Finally, the proposed procedure is illustrated via a real data set. 

متن کامل

Distribution Free Confidence Intervals for Quantiles Based on Extreme Order Statistics in a Multi-Sampling Plan

Extended Abstract. Let Xi1 ,..., Xini   ,i=1,2,3,....,k  be independent random samples from distribution $F^{alpha_i}$،  i=1,...,k, where F is an absolutely continuous distribution function and $alpha_i>0$ Also, suppose that these samples are independent. Let Mi,ni and  M'i,ni  respectively, denote the maximum and minimum of the ith sa...

متن کامل

Outer and Inner Confidence Intervals Based on Extreme Order Statistics in a Proportional Hazard Model

Let Mi and Mi be the maximum and minimum of the ith sample from k independent sample with different sample sizes, respectively. Suppose that the survival distribution function of the ith sample is F ̄i = F ̄αi, where αi is known and positive constant. It is shown that how various exact non-parametric inferential proce- ′ dures can be developed on the basis of Mi’s and Mi ’s for distribution ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 23  شماره 

صفحات  -

تاریخ انتشار 2016